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Motivation

Static Networks Temporal Networks
Permanent Interactions Temporary Interactions

I Transportation
I Internet
I Financial Market

(a) (b)



Main Questions

G = G (V ,E) where V and E are the vertex and edge set.
I How to model dynamics on a static network G.

I How to model dynamics on a discrete-time network Gn or
temporal network Gt .

I Can dynamics on a temporal network be reduced to some
more complicated dynamics but on a static network?

(Xt ,Gt )
something smart→ (X̂t , Ĝ)?

Techniques

I Generalized Master Equations.
I Laplace Transforms (particularly good for non-Markovian

settings)
I Discrete calculus and connections to PDEs.
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Discrete-Time Random Walks

Xn walks on graph G with adjacency Aij and transition
Pij = Aij/si with si =

∑
j Aij . Define pi;n = P (Xn = i).

pi;n+1 =
∑

j

Pjipj;n

and a stationary distribution π for undirected graphs (Aij = Aji )
that satisfies

π = PTπ,

and has form
πi =

si∑
i si

.

Applications: centrality measures, modularity (community
detections).
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Continuous-Time Random Walks:
Time-Homogeneous, Static Graph

Xt walks on graph G with adjacency Aij and transition
Pij = Aij/si with si =

∑
j Aij . Define pi;t = P (Xt = i).

Waiting time distribution: ψ (i ; t) = λie−λi t .
Then, we have a Kolmogorov backward equation

dpi;t

dt
=
∑

j

Aji

sj
λj︸ ︷︷ ︸

arrival

− λiδij︸︷︷︸
departure

pj;t = −
∑

j

Lijpj;t

or in matrix form a graph Heat equation,
dp
dt

= −Lp,p (0) = p0.

Undirected G =⇒ Diagonalizable L =⇒ Eigenvalue
decomposition =⇒ Rate of decay characterisation.
Applications: queueing networks, email communications.
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Continuous-Time Random Walks: Temporal Graph

Active (e.g. gossip) vs. Passive (e.g. virus).

Edge activation
Interval of edge activation PDF: ψ (t) = {ψij (t)}Ni,j=1, ind.

Active Walker Sequencing

1. Wait until one of the neighboring edges is activated.
2. Edge present for infinitesimal small times.
3. Jump immediately to the destination.
4. Back to step 1.

Transition PDF

Pij (t) = ψij (t)
∏
k 6=i

(
1−

∫ t

0
ψik
(
t ′
)

dt ′
)
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Ex: Poisson Random Walks on Static Graphs ≡
Random Walks on Poisson Temporal Graphs

Example (Edge activation: Poisson)
Interval of edge activation PDF:

ψij (t) = λije−λij t .

and thus transition PDF

Pij (t) = λije−Λi t , Λi =
∑

j

λij .

which shows that the probability to follow an edge is
proportional to its weight λij .

In particular, dp(t)
dt = −Lp (t), and we are back to a Poisson

random walk on a static graph, where Lij = λij − Λiδij .
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Non-Markovian cases

Activation PDF ψij (t) is arbitrary and induces transition Pij (t).

Denote pi (t) = P
(
X (t) = i

)
.

pi (t) =

∫ t

0
qi
(
t ′
)︸ ︷︷ ︸

arrived at i at t ′<t

φi
(
t − t ′

)︸ ︷︷ ︸
stayed at i on [t ′,t)

dt ′.

In Laplace space, p̂i (s) = φ̂i (s) q̂i (s). Note

φi (t) = 1−
∫ t

0
Pi
(
t ′
)

dt ′︸ ︷︷ ︸
leave i during [0,t)

, Pi (t)︸ ︷︷ ︸
leave i

=
N∑

j=1

Pij (t)︸ ︷︷ ︸
transition from i→j

.

By a traffic-type equation,

q̂ (s) =
(

I − P̂ (s)
)−1

p(0).
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Montroll-Weiss Equation

In Laplace space,

p̂ (s) =
1
s

(
I − D̂P (s)

)(
I − P̂ (s)

)−1
n (0) ,

(
D̂P

)
ij

(s) = P̂i (s) δij .

Non-Markovian means nonlocal in time. In real space,

dp
dt

=

(
P (t) ∗ L−1

{
D̂−1

P (s)
}
− δ (t)

)
∗ K (t) ∗ p (t)

where the memory kernel K is given in Laplace space

K̂ (s) =
sD̂P (s)

1− D̂P (s)
.

Compare to the local case, dp
dt =

(
P (t)− δ (t)

)
p = −L (t) p.

Asymptotics in Laplace space is much preferred (to find
limiting/steady state distribution).
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Applications

Network structure + Network Dynamics
I Modified PageRank centrality for continuous-time

processes.

I Sieving in membrane network filters.
I Queueing network with node/system-dependent service

rates.
I Optimal control problem formulations on temporal graphs.

Thank you! Questions?
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