Stochastic Temporal Networks

Binan Gu

Department of Mathematical Sciences, New Jersey Institute of Technology

New Jersey Institute of Technology
Optimization \& Machine Learning Seminar Fall 2021

Overview

Motivation

Stochastic Processes and Networks

Applications

Motivation

Static Networks

Temporal Networks

Permanent Interactions
Temporary Interactions

- Transportation
- Internet
- Financial Market

(a)
(b)

Main Questions

$G=G(V, E)$ where V and E are the vertex and edge set.

- How to model dynamics on a static network G.

Main Questions

$G=G(V, E)$ where V and E are the vertex and edge set.

- How to model dynamics on a static network G.
- How to model dynamics on a discrete-time network G_{n} or temporal network G_{t}.

Main Questions

$G=G(V, E)$ where V and E are the vertex and edge set.

- How to model dynamics on a static network G.
- How to model dynamics on a discrete-time network G_{n} or temporal network G_{t}.
- Can dynamics on a temporal network be reduced to some more complicated dynamics but on a static network?

Main Questions

$G=G(V, E)$ where V and E are the vertex and edge set.

- How to model dynamics on a static network G.
- How to model dynamics on a discrete-time network G_{n} or temporal network G_{t}.
- Can dynamics on a temporal network be reduced to some more complicated dynamics but on a static network?

$$
\left(X_{t}, G_{t}\right) \xrightarrow{\text { something smart }}\left(\hat{X}_{t}, \hat{G}\right) ?
$$

Main Questions

$G=G(V, E)$ where V and E are the vertex and edge set.

- How to model dynamics on a static network G.
- How to model dynamics on a discrete-time network G_{n} or temporal network G_{t}.
- Can dynamics on a temporal network be reduced to some more complicated dynamics but on a static network?

$$
\left(X_{t}, G_{t}\right) \xrightarrow{\text { something smart }}\left(\hat{X}_{t}, \hat{G}\right) ?
$$

Techniques

- Generalized Master Equations.

Main Questions

$G=G(V, E)$ where V and E are the vertex and edge set.

- How to model dynamics on a static network G.
- How to model dynamics on a discrete-time network G_{n} or temporal network G_{t}.
- Can dynamics on a temporal network be reduced to some more complicated dynamics but on a static network?

$$
\left(X_{t}, G_{t}\right) \xrightarrow{\text { something smart }}\left(\hat{X}_{t}, \hat{G}\right) ?
$$

Techniques

- Generalized Master Equations.
- Laplace Transforms (particularly good for non-Markovian settings)

Main Questions

$G=G(V, E)$ where V and E are the vertex and edge set.

- How to model dynamics on a static network G.
- How to model dynamics on a discrete-time network G_{n} or temporal network G_{t}.
- Can dynamics on a temporal network be reduced to some more complicated dynamics but on a static network?

$$
\left(X_{t}, G_{t}\right) \xrightarrow{\text { something smart }}\left(\hat{X}_{t}, \hat{G}\right) ?
$$

Techniques

- Generalized Master Equations.
- Laplace Transforms (particularly good for non-Markovian settings)
- Discrete calculus and connections to PDEs.

Discrete-Time Random Walks

X_{n} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i ; n}=P\left(X_{n}=i\right)$.

Discrete-Time Random Walks

X_{n} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i ; n}=P\left(X_{n}=i\right)$.

$$
p_{i ; n+1}=\sum_{j} P_{j i l} p_{j ; n}
$$

Discrete-Time Random Walks

X_{n} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i ; n}=P\left(X_{n}=i\right)$.

$$
p_{i ; n+1}=\sum_{j} P_{j i j} p_{j ; n}
$$

and a stationary distribution π for undirected graphs $\left(A_{i j}=A_{j i}\right)$ that satisfies

$$
\pi=P^{\mathrm{T}} \pi,
$$

and has form

$$
\pi_{i}=\frac{s_{i}}{\sum_{i} s_{i}} .
$$

Discrete-Time Random Walks

X_{n} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i ; n}=P\left(X_{n}=i\right)$.

$$
p_{i ; n+1}=\sum_{j} P_{j i} p_{j ; n}
$$

and a stationary distribution π for undirected graphs $\left(A_{i j}=A_{j i}\right)$ that satisfies

$$
\pi=P^{\mathrm{T}} \pi,
$$

and has form

$$
\pi_{i}=\frac{s_{i}}{\sum_{i} s_{i}} .
$$

Applications: centrality measures, modularity (community detections).

Continuous-Time Random Walks: Time-Homogeneous, Static Graph

X_{t} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i ; t}=P\left(X_{t}=i\right)$.

Continuous-Time Random Walks: Time-Homogeneous, Static Graph

X_{t} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i ; t}=P\left(X_{t}=i\right)$. Waiting time distribution: $\psi(i ; t)=\lambda_{i} e^{-\lambda_{i} t}$.

Continuous-Time Random Walks: Time-Homogeneous, Static Graph

X_{t} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i, t}=P\left(X_{t}=i\right)$. Waiting time distribution: $\psi(i ; t)=\lambda_{i} e^{-\lambda_{i} t}$. Then, we have a Kolmogorov backward equation

$$
\frac{d p_{i, t}}{d t}=\sum_{j}(\underbrace{\frac{A_{j j}}{s_{j}} \lambda_{j}}_{\text {arrival }}-\underbrace{\lambda_{i} \delta_{i j}}_{\text {departure }}) p_{j ; t}=-\sum_{j} L_{i j} p_{j ; t}
$$

Continuous-Time Random Walks: Time-Homogeneous, Static Graph

X_{t} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i, t}=P\left(X_{t}=i\right)$. Waiting time distribution: $\psi(i ; t)=\lambda_{i} e^{-\lambda_{i} t}$.
Then, we have a Kolmogorov backward equation

$$
\frac{d p_{i, t}}{d t}=\sum_{j}(\underbrace{\frac{A_{j j}}{s_{j}}}_{\text {arrival }} \lambda_{j}-\underbrace{\lambda_{i} \delta_{i j}}_{\text {departure }}) p_{j ; t}=-\sum_{j} L_{i j} p_{j ; t}
$$

or in matrix form a graph Heat equation,

$$
\frac{d p}{d t}=-L p, p(0)=p_{0} .
$$

Continuous-Time Random Walks: Time-Homogeneous, Static Graph

X_{t} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i, t}=P\left(X_{t}=i\right)$.
Waiting time distribution: $\psi(i ; t)=\lambda_{i} e^{-\lambda_{i} t}$.
Then, we have a Kolmogorov backward equation

$$
\frac{d p_{i, t}}{d t}=\sum_{j}(\underbrace{\frac{A_{j i}}{s_{j}}}_{\text {arrival }} \lambda_{j}-\underbrace{\lambda_{i} \delta_{i j}}_{\text {departure }}) p_{j ; t}=-\sum_{j} L_{i j} p_{j ; t}
$$

or in matrix form a graph Heat equation,

$$
\frac{d p}{d t}=-L p, p(0)=p_{0} .
$$

Undirected $G \Longrightarrow$ Diagonalizable $L \Longrightarrow$ Eigenvalue decomposition \Longrightarrow Rate of decay characterisation.

Continuous-Time Random Walks:
 Time-Homogeneous, Static Graph

X_{t} walks on graph G with adjacency $A_{i j}$ and transition $P_{i j}=A_{i j} / s_{i}$ with $s_{i}=\sum_{j} A_{i j}$. Define $p_{i, t}=P\left(X_{t}=i\right)$.
Waiting time distribution: $\psi(i ; t)=\lambda_{i} e^{-\lambda_{i} t}$.
Then, we have a Kolmogorov backward equation

$$
\frac{d p_{i, t}}{d t}=\sum_{j}(\underbrace{\frac{A_{j j}}{s_{j}} \lambda_{j}}_{\text {arrival }}-\underbrace{\lambda_{i} \delta_{i j}}_{\text {departure }}) p_{j ; t}=-\sum_{j} L_{i j} p_{j ; t}
$$

or in matrix form a graph Heat equation,

$$
\frac{d p}{d t}=-L p, p(0)=p_{0} .
$$

Undirected $G \Longrightarrow$ Diagonalizable $L \Longrightarrow$ Eigenvalue decomposition \Longrightarrow Rate of decay characterisation. Applications: queueing networks, email communications.

Continuous-Time Random Walks: Temporal Graph

Active (e.g. gossip) vs. Passive (e.g. virus).

Continuous-Time Random Walks: Temporal Graph

Active (e.g. gossip) vs. Passive (e.g. virus).

Continuous-Time Random Walks: Temporal Graph

Active (e.g. gossip) vs. Passive (e.g. virus).
Edge activation Interval of edge activation PDF: $\psi(t)=\left\{\psi_{i j}(t)\right\}_{i, j=1}^{N}$, ind.

Continuous-Time Random Walks: Temporal Graph

Active (e.g. gossip) vs. Passive (e.g. virus).
Edge activation Interval of edge activation PDF: $\psi(t)=\left\{\psi_{i j}(t)\right\}_{i, j=1}^{N}$, ind.

Active Walker Sequencing

1. Wait until one of the neighboring edges is activated.

Continuous-Time Random Walks: Temporal Graph

Active (e.g. gossip) vs. Passive (e.g. virus).
Edge activation Interval of edge activation PDF: $\psi(t)=\left\{\psi_{i j}(t)\right\}_{i, j=1}^{N}$, ind.
Active Walker Sequencing

1. Wait until one of the neighboring edges is activated.
2. Edge present for infinitesimal small times.

Continuous-Time Random Walks: Temporal Graph

Active (e.g. gossip) vs. Passive (e.g. virus).
Edge activation Interval of edge activation PDF: $\psi(t)=\left\{\psi_{i j}(t)\right\}_{i, j=1}^{N}$, ind.
Active Walker Sequencing

1. Wait until one of the neighboring edges is activated.
2. Edge present for infinitesimal small times.
3. Jump immediately to the destination.

Continuous-Time Random Walks: Temporal Graph

Active (e.g. gossip) vs. Passive (e.g. virus).
Edge activation Interval of edge activation PDF: $\psi(t)=\left\{\psi_{i j}(t)\right\}_{i, j=1}^{N}$, ind.
Active Walker Sequencing

1. Wait until one of the neighboring edges is activated.
2. Edge present for infinitesimal small times.
3. Jump immediately to the destination.
4. Back to step 1.

Continuous-Time Random Walks: Temporal Graph

Active (e.g. gossip) vs. Passive (e.g. virus).
Edge activation Interval of edge activation PDF: $\psi(t)=\left\{\psi_{i j}(t)\right\}_{i, j=1}^{N}$, ind.
Active Walker Sequencing

1. Wait until one of the neighboring edges is activated.
2. Edge present for infinitesimal small times.
3. Jump immediately to the destination.
4. Back to step 1.

Transition PDF

$$
P_{i j}(t)=\psi_{i j}(t) \prod_{k \neq i}\left(1-\int_{0}^{t} \psi_{i k}\left(t^{\prime}\right) d t^{\prime}\right)
$$

Ex: Poisson Random Walks on Static Graphs \equiv Random Walks on Poisson Temporal Graphs

Example (Edge activation: Poisson) Interval of edge activation PDF:

$$
\psi_{i j}(t)=\lambda_{i j} e^{-\lambda_{i j} t}
$$

Ex: Poisson Random Walks on Static Graphs \equiv Random Walks on Poisson Temporal Graphs

Example (Edge activation: Poisson)

 Interval of edge activation PDF:$$
\psi_{i j}(t)=\lambda_{i j} e^{-\lambda_{j i} t} .
$$

and thus transition PDF

$$
P_{i j}(t)=\lambda_{i j} e^{-\Lambda_{i} t}, \quad \Lambda_{i}=\sum_{j} \lambda_{i j} .
$$

which shows that the probability to follow an edge is proportional to its weight $\lambda_{i j}$.

Ex: Poisson Random Walks on Static Graphs \equiv Random Walks on Poisson Temporal Graphs

Example (Edge activation: Poisson)

 Interval of edge activation PDF:$$
\psi_{i j}(t)=\lambda_{i j} e^{-\lambda_{i j} t}
$$

and thus transition PDF

$$
P_{i j}(t)=\lambda_{i j} e^{-\Lambda_{i} t}, \quad \Lambda_{i}=\sum_{j} \lambda_{i j}
$$

which shows that the probability to follow an edge is proportional to its weight $\lambda_{i j}$.
In particular, $\frac{d p(t)}{d t}=-L p(t)$, and we are back to a Poisson random walk on a static graph, where $L_{i j}=\lambda_{i j}-\Lambda_{i} \delta_{i j}$.

Non-Markovian cases

Activation PDF $\psi_{i j}(t)$ is arbitrary and induces transition $P_{i j}(t)$.

Non-Markovian cases

Activation PDF $\psi_{i j}(t)$ is arbitrary and induces transition $P_{i j}(t)$. Denote $p_{i}(t)=P(X(t)=i)$.

Non-Markovian cases

Activation PDF $\psi_{i j}(t)$ is arbitrary and induces transition $P_{i j}(t)$. Denote $p_{i}(t)=P(X(t)=i)$.

$$
p_{i}(t)=\int_{0}^{t} \underbrace{q_{i}\left(t^{\prime}\right)}_{\text {arrived at } i \text { at } t^{\prime}<t} \underbrace{\phi_{i}\left(t-t^{\prime}\right)}_{\text {stayed at } i \text { on }\left[t^{\prime}, t\right)} d t^{\prime}
$$

Non-Markovian cases

Activation PDF $\psi_{i j}(t)$ is arbitrary and induces transition $P_{i j}(t)$. Denote $p_{i}(t)=P(X(t)=i)$.

$$
p_{i}(t)=\int_{0}^{t} \underbrace{q_{i}\left(t^{\prime}\right)}_{\text {arrived at } i \text { at } t^{\prime}<t} \underbrace{\phi_{i}\left(t-t^{\prime}\right)}_{\text {stayed at } i \text { on }\left[t^{\prime}, t\right)} d t^{\prime}
$$

In Laplace space, $\hat{p}_{i}(s)=\hat{\phi}_{i}(s) \hat{q}_{i}(s)$.

Non-Markovian cases

Activation PDF $\psi_{i j}(t)$ is arbitrary and induces transition $P_{i j}(t)$. Denote $p_{i}(t)=P(X(t)=i)$.

$$
p_{i}(t)=\int_{0}^{t} \underbrace{q_{i}\left(t^{\prime}\right)}_{\text {arrived at } i \text { at } t^{\prime}<t} \underbrace{\phi_{i}\left(t-t^{\prime}\right)}_{\text {stayed at } i \text { on }\left[t^{\prime}, t\right)} d t^{\prime}
$$

In Laplace space, $\hat{p}_{i}(s)=\hat{\phi}_{i}(s) \hat{q}_{i}(s)$. Note

Non-Markovian cases

Activation PDF $\psi_{i j}(t)$ is arbitrary and induces transition $P_{i j}(t)$. Denote $p_{i}(t)=P(X(t)=i)$.

$$
p_{i}(t)=\int_{0}^{t} \underbrace{q_{i}\left(t^{\prime}\right)}_{\text {arrived at } i \text { at } t^{\prime}<t} \underbrace{\phi_{i}\left(t-t^{\prime}\right)}_{\text {stayed at } i \text { on }\left[t^{\prime}, t\right)} d t^{\prime}
$$

In Laplace space, $\hat{p}_{i}(s)=\hat{\phi}_{i}(s) \hat{q}_{i}(s)$. Note

$$
\underbrace{P_{i}(t)}_{\text {leave } i}=
$$

Non-Markovian cases

Activation PDF $\psi_{i j}(t)$ is arbitrary and induces transition $P_{i j}(t)$. Denote $p_{i}(t)=P(X(t)=i)$.

$$
p_{i}(t)=\int_{0}^{t} \underbrace{q_{i}\left(t^{\prime}\right)}_{\text {arrived at } i \text { at } t^{\prime}<t} \underbrace{\phi_{i}\left(t-t^{\prime}\right)}_{\text {stayed at } i \text { on }\left[t^{\prime}, t\right)} d t^{\prime}
$$

In Laplace space, $\hat{p}_{i}(s)=\hat{\phi}_{i}(s) \hat{q}_{i}(s)$. Note

$$
\underbrace{P_{i}(t)}_{\text {leave } i}=\sum_{j=1}^{N} \underbrace{P_{i j}(t)}_{\text {transition from } i \rightarrow j}
$$

Non-Markovian cases

Activation PDF $\psi_{i j}(t)$ is arbitrary and induces transition $P_{i j}(t)$. Denote $p_{i}(t)=P(X(t)=i)$.

$$
p_{i}(t)=\int_{0}^{t} \underbrace{q_{i}\left(t^{\prime}\right)}_{\text {arrived at } i \text { at } t^{\prime}<t} \underbrace{\phi_{i}\left(t-t^{\prime}\right)}_{\text {stayed at } i \text { on }\left[t^{\prime}, t\right)} d t^{\prime}
$$

In Laplace space, $\hat{p}_{i}(s)=\hat{\phi}_{i}(s) \hat{q}_{i}(s)$. Note

$$
\phi_{i}(t)=1-\underbrace{\int_{0}^{t} P_{i}\left(t^{\prime}\right) d t^{\prime}}_{\text {leave } i \text { during }[0, t)}, \quad \underbrace{P_{i}(t)}_{\text {leave } i}=\sum_{j=1}^{N} \underbrace{P_{i j}(t)}_{\text {transition from } i \rightarrow j} .
$$

Non-Markovian cases

Activation PDF $\psi_{i j}(t)$ is arbitrary and induces transition $P_{i j}(t)$. Denote $p_{i}(t)=P(X(t)=i)$.

$$
p_{i}(t)=\int_{0}^{t} \underbrace{q_{i}\left(t^{\prime}\right)}_{\text {arrived at } i \text { at } t^{\prime}<t} \underbrace{\phi_{i}\left(t-t^{\prime}\right)}_{\text {stayed at } i \text { on }\left[t^{\prime}, t\right)} d t^{\prime}
$$

In Laplace space, $\hat{p}_{i}(s)=\hat{\phi}_{i}(s) \hat{q}_{i}(s)$. Note

$$
\phi_{i}(t)=1-\underbrace{\int_{0}^{t} P_{i}\left(t^{\prime}\right) d t^{\prime}}_{\text {leave } i \text { during }[0, t)}, \quad \underbrace{P_{i}(t)}_{\text {leave } i}=\sum_{j=1}^{N} \underbrace{P_{i j}(t)}_{\text {transition from } i \rightarrow j} .
$$

By a traffic-type equation,

$$
\hat{q}(s)=(I-\hat{P}(s))^{-1} p(0)
$$

Montroll-Weiss Equation

In Laplace space,

$$
\hat{p}(s)=\frac{1}{s}\left(I-\hat{D}_{P}(s)\right)(I-\hat{P}(s))^{-1} n(0), \quad\left(\hat{D}_{P}\right)_{i j}(s)=\hat{P}_{i}(s) \delta_{i j}
$$

Montroll-Weiss Equation

In Laplace space,

$$
\hat{p}(s)=\frac{1}{s}\left(I-\hat{D}_{P}(s)\right)(I-\hat{P}(s))^{-1} n(0), \quad\left(\hat{D}_{P}\right)_{i j}(s)=\hat{P}_{i}(s) \delta_{i j}
$$

Non-Markovian means nonlocal in time. In real space,

$$
\frac{d p}{d t}=\left(P(t) * \mathcal{L}^{-1}\left\{\hat{D}_{P}^{-1}(s)\right\}-\delta(t)\right) * K(t) * p(t)
$$

where the memory kernel K is given in Laplace space

$$
\hat{K}(s)=\frac{s \hat{D}_{P}(s)}{1-\hat{D}_{P}(s)}
$$

Montroll-Weiss Equation

In Laplace space,

$$
\hat{p}(s)=\frac{1}{s}\left(I-\hat{D}_{P}(s)\right)(I-\hat{P}(s))^{-1} n(0), \quad\left(\hat{D}_{P}\right)_{i j}(s)=\hat{P}_{i}(s) \delta_{i j}
$$

Non-Markovian means nonlocal in time. In real space,

$$
\frac{d p}{d t}=\left(P(t) * \mathcal{L}^{-1}\left\{\hat{D}_{P}^{-1}(s)\right\}-\delta(t)\right) * K(t) * p(t)
$$

where the memory kernel K is given in Laplace space

$$
\hat{K}(s)=\frac{s \hat{D}_{P}(s)}{1-\hat{D}_{P}(s)}
$$

Compare to the local case, $\frac{d p}{d t}=(P(t)-\delta(t)) p=-L(t) p$.

Montroll-Weiss Equation

In Laplace space,

$$
\hat{p}(s)=\frac{1}{s}\left(I-\hat{D}_{P}(s)\right)(I-\hat{P}(s))^{-1} n(0), \quad\left(\hat{D}_{P}\right)_{i j}(s)=\hat{P}_{i}(s) \delta_{i j}
$$

Non-Markovian means nonlocal in time. In real space,

$$
\frac{d p}{d t}=\left(P(t) * \mathcal{L}^{-1}\left\{\hat{D}_{P}^{-1}(s)\right\}-\delta(t)\right) * K(t) * p(t)
$$

where the memory kernel K is given in Laplace space

$$
\hat{K}(s)=\frac{s \hat{D}_{P}(s)}{1-\hat{D}_{P}(s)} .
$$

Compare to the local case, $\frac{d p}{d t}=(P(t)-\delta(t)) p=-L(t) p$. Asymptotics in Laplace space is much preferred (to find limiting/steady state distribution).

Applications

Network structure + Network Dynamics

- Modified PageRank centrality for continuous-time processes.

Applications

Network structure + Network Dynamics

- Modified PageRank centrality for continuous-time processes.
- Sieving in membrane network filters.

Applications

Network structure + Network Dynamics

- Modified PageRank centrality for continuous-time processes.
- Sieving in membrane network filters.
- Queueing network with node/system-dependent service rates.

Applications

Network structure + Network Dynamics

- Modified PageRank centrality for continuous-time processes.
- Sieving in membrane network filters.
- Queueing network with node/system-dependent service rates.
- Optimal control problem formulations on temporal graphs.

Applications

Network structure + Network Dynamics

- Modified PageRank centrality for continuous-time processes.
- Sieving in membrane network filters.
- Queueing network with node/system-dependent service rates.
- Optimal control problem formulations on temporal graphs.

Thank you! Questions?

References

囯 Gregory Lawler．（2010）Random Walk and the Heat Equation．AMS．
Till Hoffmann，Mason A．Porter，Renaud Lambiotte（2013） Random Walks on Stochastic Temporal Networks．Book Chapter in Temporal Networks edited by Petter Holme and Jari Saramaki．Springer．

䍰 Till Hoffmann，Mason A．Porter，Renaud Lambiotte（2012） Generalized Master Equations for Non－Poisson Dynamics on Networks．Phys．Rev．E，86， 4.
䡒 Naoki Masuda，Mason A．Porter，Renaud Lambiotte（2017） Random walks and diffusion on networks．Physics Reports．

